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An efficient linear-scaling approach to the van der Waals density functional in electronic-structure calcula-
tions is demonstrated. The nonlocal correlation potential needed in self-consistent calculations is derived in a
practical form. This enables also an efficient determination of the Hellmann-Feynman forces on atoms. The
numerical implementation employs adaptive quadrature grids in real space resulting in a fast and an accurate
evaluation of the functional and the potential. The approach is incorporated in the atomic orbital code SIESTA.
The application of the method to the S22 set of noncovalently bonded molecules and comparison with the
quantum chemistry data reveal an overall agreement but show that different exchange functionals should be
used for different types of bonds.
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The van der Waals �vdW� interaction plays an important
role in various processes in biochemistry, in surface science,
and in physics of layered materials. Although the basic un-
derlying physics of dispersion forces is understood, an accu-
rate and efficient calculation of the vdW interaction is still
challenging.

The post-Hartree-Fock approaches, based on perturbation
theory, are able to treat the vdW interaction. For instance, the
coupled-cluster methods1 �especially coupled-cluster with
single and double and perturbative triple excitations,
CCSD�T�� are very accurate and often used in benchmark
calculations. Unfortunately, the high precision comes with
enormous computational expenses, making the method fully
applicable only for small complexes with less than a few
dozen of atoms. The second-order Møller-Plesset perturba-
tion theory �MP2�, although less expensive and less accurate,
also contains the essential physics for describing the vdW
interaction. Both of the two methods are not straightforward
to apply to extended systems and the existing approaches to
periodic systems, as those in Refs. 2 and 3, are fairly expen-
sive and not in common use.

Another class of methods for electronic-structure calcula-
tions is based on the density-functional theory �DFT�. The
standard approximations to the exchange-correlation energy
in DFT, such as the local-density approximation �LDA� and
the generalized-gradient approximation �GGA�, are rela-
tively cheap and easily applicable also to periodic systems.
Unfortunately, these methods cannot describe the dispersion
interaction properly. The problem has been addressed by
Langreth, Lundqvist and co-workers,4–6 who constructed a
nonlocal correlation functional aiming to preserve the essen-
tial mechanisms behind the vdW interaction. This approach
has been successfully utilized for selected test systems and
applications.7–10 However, most of these results are obtained
either using an a posteriori energy correction scheme or a
self-consistent calculation with a restricted capability of re-
laxing the structures. The reason for this is the computational
complexity of the self-consistent approach of Ref. 11, which
was employed in the earlier self-consistent calculations.

In this Rapid Communication, we demonstrate our alter-
native highly efficient real-space approach. We derive the
functional derivative of the vdW density functional �vdW-
DF� and obtain a representation, which enables a simpler

evaluation of the nonlocal correlation potential and forces for
self-consistent calculations with full atomic relaxation. Our
implementation employs numerical quadratures on adaptive
grids, which vary depending on the local properties of the
electron density and are optimized to calculate the vdW-DF.
We perform calculations on the widely used molecular
benchmark set S22.12 The results for its molecular complexes
provide an extensive test for the reliability of the vdW-DF.
Simple examples such as noble gas dimers are not suitable
for these purposes as they do not provide a complete picture
with respect to the variation in the nature of the bonding.
Extended systems are either not discussed as a systematic
discussion would require a versatile test set, which does not
exist.

Starting from the adiabatic connection-fluctuation dissipa-
tion theorem, Dion et al.4 derived the nonlocal part of the
correlation energy in the compact form

Ec
nl�n� =

1

2
� � n�r���r,r��n�r��d3rd3r�, �1�

where n�r� is the electron density and ��r ,r�� is a kernel.
Following Dion et al.,4 we write the kernel as a function of
the dimensionless variables D and � defined as

D =
q0�r� + q0�r��

2
�r − r�� , �2�

� =
q0�r� − q0�r��
q0�r� + q0�r��

, �3�

where q0�r� is a characteristic wave number, which depends
on the density and its gradient at the given point r. Addition-
ally it can be related to the radius of the sphere, where the
kernel function is mostly localized.

For self-consistent calculations, an algorithm to evaluate
also the correlation potential is required. One method is in-
troduced in Ref. 11. However, we suggest a different ap-
proach. The functional derivative vc

nl�r�=�Ec
nl /�n�r� is

evaluated using the variables D and �. Employing the chain
rule, after straightforward but rather tedious steps, we obtain
the expression
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where the energy density is

�c
nl�r� =

1

2
� ��r,r��n�r��d3r�. �5�

Equations �4� and �5� contain only a single integral over r�,
which can be conveniently evaluated numerically in spheri-
cal coordinates r̃ with r as the origin, i.e., r̃=r�−r. The
choice of spherical instead of Cartesian coordinates is in-
spired by the shape of the kernel function. First, it is local-
ized in space within a radius that can be defined locally.
Second, it has a logarithmic singularity at the point D=0,
which is removed by the Jacobian factor in the spherical
coordinates.

The nonlocal correlation energy density can be approxi-
mated by the sum

�c
nl�r� � �

ij

��r,r + r̃ij�n�r + r̃ij�wrad�r̃i�wang��̃ j� , �6�

where the weights wrad�r̃i� and wang��̃ j� correspond to the
radial and angular parts of the integral, respectively. The lat-

ter is calculated on a Lebedev grid �̃ j.
13 The Gauss-

Chebyshev quadrature of the second kind yields the radial
integral weights wrad�r̃i�. The substitution,

r̃ = rm
1 − x

1 + x
, �7�

is used to map the initial integration range 0� r̃�� to the
range −1�x�1. The parameter rm scales the grid and can be
selected so that the quadrature grid r̃ij adapts to the behavior
of the kernel function. The kernel function experiences most
rapid variations at small D values up to Dmax�2. This de-
fines the range of r̃, where the contribution to the integral
�Eq. �5�� is the largest and also the most difficult to calculate.
If rm=1 /q0�r�, on average half of the grid points corresponds
to D�1 and �70% to D�2.

The above-described approach requires an algorithm to
evaluate the density n�r� and the wave number q0�r� at any
point in the space. In many electronic-structure codes, the
valence electron density is represented as a smooth function
on a Cartesian grid, which is used also for representing the
potential and integrating �c

nl�r� to obtain Ec
nl. Trilinear or

tricubic interpolation can be used to evaluate this function on
the spherical quadrature grid on which the more rapidly
varying kernel function can be represented accurately
enough.

The explicit expression for ��r ,r�� involves a two-
dimensional integral and is not suitable for practical calcula-
tions due to its complexity. Similarly to the previous
approaches,4,11 we use a look-up table to evaluate

D2��D ,��. The derivatives �� /�D and �� /�� appearing in
Eq. �4� are preferably evaluated from the same table instead
of storing them separately as in Ref. 11. In the present work,
this is done by bivariate cubic spline interpolation that allows
us to obtain smooth first derivatives and is constructed by
assuming continuous piecewise-bilinear second derivatives.

The order of computational complexity of evaluating
�c

nl�r� and vc
nl�r� at a given r is O�1� since the evaluation is

limited by the size of the spherical coordinate grid r̃ij and
does not directly depend neither on the size of the Cartesian
grid nor on the number of atoms Nat. Formally, the nonlocal
correlation energy density and potential have to be calculated
in all Ngrid points of the Cartesian grid. For a sparse system,
the volume of regions with zero or nearly zero electron den-
sity may be substantial. Calculating the nonlocal correlation
energy density and potential at such points is very cheap, so
it matters only how many Cartesian grid nodes with nonzero
electron density there are. This number is proportional to the
volume taken by the atoms, which in turn is roughly propor-
tional to Nat and the density of the Cartesian grid points
1 /vgrid. Based on these considerations, the nonlocal correla-
tion energy density and potential have to be evaluated in
O�Nat ·1 /vgrid� points, which determines the order of the
overall computational complexity.

The computational expense can be decreased without
changing the order of complexity when additional adapting
of both the radial and angular quadrature grids is done. Equa-
tion �1� implies that different regions of space do not con-
tribute to Ec

nl equally, and thus it is not necessary to have
quadratures with the same order of accuracy at every point.
Low electron density regions can be treated by using radial
grids r̃i with less points than needed in grids at high-density
regions. Moreover, the smoothness of the electron density
can be used to reduce the sizes of angular grids � j so that,
when r̃ decreases, less spherical harmonics are required to
calculate the integral on the sphere.

We have implemented the vdW-DF into the SIESTA code.14

We use Troullier-Martins norm-conserving pseudopotentials
generated with the Perdew-Burke-Ernzerhof �PBE�
exchange-correlation functional.15 Sankey-type orbitals with
the energy shift of 3 meV are used to generate the basis set
on the triple zeta with polarization level.

In order to illustrate our adaptive-grid algorithm, we per-
form calculations for a Ne dimer. Figure 1 shows how the
computational expense is distributed at different levels of
optimization. The level of accuracy for evaluating the energy
density �c

nl�r� is the same in all these calculations. If the
number of points in the quadrature grid r̃ij is not varied �Fig.
1�a��, the evaluation of �c

nl�r� is almost equally expensive in
high- and low-density regions. If only the radial grid is
adapted �Fig. 1�b��, the high-density regions are the most
expensive to process and the total computational cost is
clearly smaller than in the previous approach. Finally, when
both radial and angular grids are adapted �Fig. 1�c��, there is
a small island halfway between the Ne atoms and
intermediate-density regions that require the largest effort.

Figure 1�d� shows the difference in the quantity ec
nl�r�

=n�r��c
nl�r� calculated between the dimer and the individual

atoms. Remarkably, the island between the Ne atoms notice-
ably affects the bonding by adding a repulsive component to
the interaction energy of the atoms.
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In order to perform an extensive test of the vdW-DF and
its present implementation, we have investigated the S22 set
of molecules.12 The structures of the molecules are com-
pletely optimized with the force convergence threshold of
0.01 eV /Å. The real-space grid cutoff of 250 Ry is chosen
to diminish the “egg-box” effects due to the representation of
the exchange-correlation potential on the Cartesian grid.
When calculating the interaction energies, the basis set su-
perposition error is estimated by using the counterpoise cor-
rection method.16 The typical size of the correction is 20 %
of the total interaction energy.

The original approach by Dion et al.4 implies the use of
the revised Perdew-Burke-Ernzerhof �revPBE� exchange.17

Such an approach is based on the notion that this exchange
functional provides little or no bonding for van der Waals
systems. On the other hand, it is known that revPBE system-
atically overestimates experimental bond lengths18 and gives
smaller binding energies than the PBE or the Perdew-Wang
91 �Ref. 19� functional, which are more frequently used for
different applications. Thus, it is important to understand the
performance of the vdW-DF depending on the choice of the
exchange functional. This has been addressed previously by
Vydrov et al.20 who found for a limited set of examples that
the use of the revPBE exchange matches experimental or
highly accurate quantum-chemical data better than the PBE
or the exact exchange functional.

In the present Rapid Communication, we consider the
revPBE and PBE exchange functionals. The results for the
binding energies of the S22 molecular complexes are shown
in Table I and visualized in Fig. 2. Table I shows a few
systematic trends for the interaction energies obtained with
different exchange functionals within the vdW-DF scheme.
The complexes are bound stronger when employing the PBE
than the revPBE exchange functional reflecting the more re-
pulsive exchange interaction at the relevant intermolecular
distance range when the latter functional is used. For the
systems with predominant dispersion contributions and
mixed complexes, as grouped in Table I, the revPBE ex-
change functional is somewhat more advantageous, as justi-

FIG. 1. �Color online� Test system of a Ne dimer. The positions of the nuclei with the distance of 3.0 Å are shown in part �a�. �a�–�c�
The distribution of sizes of quadrature grids used for the evaluation of �c

nl�r� and vc
nl�r� on different levels of adaptation is shown. �a� The

quadrature grid size is not varied. �b� Only the number of radial shells is adjusted. c� Both the radial and angular grids are adapted. �d� The
nonlocal correlation energy contributions to the binding energy are shown. The plotted quantity is the difference in the function
105 ·n�r��c

nl�r� �in atomic units� between the dimer and the two free atoms at the dimer distance. The solid, long-, and short-dashed isolines
correspond to negative, zero, and positive values, respectively.

TABLE I. Calculated binding energies �in meV� for the S22
model systems of Ref. 12. Complexes 1–7 are hydrogen bonded.
Complexes 8–15 are with predominant dispersion interaction. The
remaining ones are complexes with mixed bonding character.

Complex

vdW-DF

CCSD�T�crevPBEa PBEa

1 �NH3�2 106 161 137

2 �H2O�2 177 242 218

3 Formic acid dimer 610 793 807

4 Formamide dimer 542 698 692

5 Uracil dimer 701 893 895

6 2-pyridoxine·2-aminopyridine 608 778 725

7 Adenine· thymine 586�659b� 762 710

8 �CH4�2 38 67 23

9 �C2H4�2 61 116 65

10 Benzene·CH4 60�68b� 109 65

11 Benzene dimer �slip-parallel� 119�119b� 215 118

12 Pyrazine dimer 168 271 192

13 Uracil dimer �stack� 356�305b� 560 439

14 Indole·benzene �stack� 188 318 226

15 Adenine· thymine �stack� 425�414b� 639 530

16 Ethene·ethine 67 103 66

17 Benzene·H2O 118�118b� 180 142

18 Benzene·NH3 81 138 102

19 Benzene·HCN 168 238 193

20 Benzene dimer �T-shape� 89 173 119

21 Indole·benzene �T-shape� 205 299 248

22 Phenol dimer 252 369 306

aPresent Rapid Communication.
bReference 7.
cReference 12.
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fied by the good agreement with the CCSD�T� data.12 On the
other hand, the hydrogen-bonded complexes are poorly de-
scribed if the revPBE exchange is used with the vdW-DF,
while the results obtained with the PBE exchange functional
match well the reference data.

Some of the S22 systems have been studied earlier by
Cooper et al.7 using revPBE exchange. However, they did
not optimize the geometries completely but relied on a par-
tial relaxation. Moreover, in the present work, basis functions

and pseudopotentials differ from the previous ones, and also
therefore one cannot expect a perfect matching with the ear-
lier results. Nevertheless, as shown in Table I the binding
energies are in rather good agreement with the exception of
the hydrogen-bonded adenine-thymine complex for which
the difference is 74 meV.

In conclusion, we have demonstrated an efficient real-
space algorithm to evaluate the vdW correlation energy and
potential. The application to the noncovalently bound com-
plexes of the S22 set reveals a remarkable agreement be-
tween the vdW-DF and accurate quantum chemistry meth-
ods. The dependence on the exchange functional used with
vdW-DF has been confirmed. While it has been believed that
the revPBE exchange functional is the most appropriate one
for vdW-DF calculations, we have shown a class of counter-
examples demonstrating a systematic underbinding when us-
ing the revPBE, while the PBE exchange functional succeeds
well. Such observations imply that none of the popular GGA
exchange functionals can be considered as universal for
problems where noncovalent bonds play the major role.
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for useful discussions.
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FIG. 2. �Color online� Binding energies for molecular com-
plexes listed in Table I. The MP2 and CCSD�T� results are from
Ref. 12.
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